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Mean Reversion Models and No-Arbitrage Prices 
 

Motivation 
 
I recently valued a complex derivative where WTI oil was the underlying price. The valuation 
required a Monte Carlo simulation. When the valuation was reviewed by a major accounting 
firm, the values produced by their specialists deviated from mine more than expected. After a 
cooperative exchange, I identified the primary source of the difference. The reviewers’ model 
produced average future spot prices that were not equal to the market forward price. This 
violates the “no-arbitrage” requirement of pricing models. The source of the error was the 
omission of “drift-adjustment” terms.  
 
To avoid misunderstanding, let me use a familiar example to indicate what was missing. In a 
risk-neutral simulation of stock prices that follow geometric Brownian motion (GBM), the 

total drift in the stock price is (𝑟 −
𝜎2

2
) ∆𝑡, where r is the risk-free interest rate, (−

𝜎2

2
), is the 

drift-adjustment term (DAT) and ∆𝑡 is a unit of time.  
 
The application of Ito’s lemma gives rise to the DAT in mean-reversion models, just as it does 
in GBM models. This has been recognized in the continuous-time literature on mean-
reversion models.1 However, I wanted to refer the reviewers to a published reference that 
would explain how to calculate the DATs required in a discrete time model. If such a reference 
exists, I was not able to find it. Therefore, I prepared this note. 
  

I begin by  presenting a derivation of the GBM DAT, (−
𝜎2

2
). I think that will help the reader 

follow the more complex deviation for the mean-reversion of DATs.  After completing the 
derivation of DATs for a Monte Carlo simulation, I wondered how these results would apply 
to building a lattice of prices for a mean-reverting process. I reviewed Hull’s2 excellent 
textbook on how to derive a trinomial lattice of prices for a mean reverting process. His 
method involves a search process to identify the DATs. The derivation of the DATs for the 
Monte Carlo implementation provides the basis for the analytical calculation of DATs 
required by lattices. I use Hull’s example to demonstrate how to use the analytical solution 
and avoid the search process.  
 
Derivation of the DAT 
 

1. Geometric Brownian Motion 
 
We assume that a stock price at date t, St, follows a stochastic process with a constant drift 
rate of r and a constant volatility of σ: 
 
𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑z 
 
where dz is a Wiener process. For this stock price process, we know from the application of 
Ito’s lemma that the rate of return on St,  
 
xt  = ln St , follows the process: 

                                                 
1 Eduardo S. Schwartz. “The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging”, 
Journal of Finance, Vol. 52, No. 3, p. 926. (I want to thank Andrew Lyasoff for suggesting this reference.) 
2 John C. Hull. Options Futures and Other Derivatives, 8th Edition, 2012, Prentice-Hall, New York, N. Y.  



 

 

 

 

𝑑𝑥𝑡 = (𝑟 −
𝜎2

2
) 𝑑𝑡 + 𝜎𝑑z. 

 
The DAT is equal to one-half the variance,  
 

DAT = (−
𝜎2

2
).  

 
The stock price rate of return is normally distributed with a mean and standard deviation over 

the time interval T equal to (𝑟 −
𝜎2

2
) 𝑇 and  𝜎√𝑇, respectively. 

 
The realtionship, 
 

𝑥𝑡 + 𝑑𝑥𝑡 = (𝑟 −
𝜎2

2
) 𝑑𝑡 + 𝜎𝑑z, 

 
can be written in discrete time as: 
 

𝑥𝑡+Δ𝑡 = 𝑥𝑡 + Δ𝑥𝑡 = 𝑥𝑡 + (𝑟 −
𝜎2

2
) Δ𝑡 + 𝜎√∆𝑡𝑧𝑡+Δ𝑡, 

 
where zt is a unit normal random variate. Without loss of generality we can set t = 0 and 
Δt = 1.  Then:  
 

𝑥1 = 𝑥0 + 𝑟 + 𝐷𝐴𝑇1 + 𝜎𝑧1 = 𝑥0 + (𝑟 −
𝜎2

2
) + 𝜎𝑧1, 

 

𝑥2 = 𝑥1 + 𝑟 + 𝐷𝐴𝑇2 + 𝜎𝑧2 = 𝑥0 + (𝑟 −
𝜎2

2
) + 𝑟 + 𝐷𝐴𝑇2 + 𝜎(𝑧1 + 𝑧2). 

 
The variance of x2 is 2σ2. Therefore, by Ito’s lemma: 
 

𝐷𝐴𝑇1 + 𝐷𝐴𝑇2 = −
2𝜎2

2
  and DAT2 = (−

𝜎2

2
).  

 
We have the general relationship that xn  is normally distributed with mean and volatility 

equal to 𝑛 (𝑟 −
𝜎2

2
) and 𝜎√𝑛, and 

 

DATi = DATj = (−
𝜎2

2
)  

 
2. Mean Reversion 

 
In this case, a commodity price at date t, St, follows a mean-reverting stocastic process with a 
time-varying expected value,  a rate of reversion, θ, to the expected value of μt and a constant 
volatility of σ: 
 
𝑑𝑆𝑡 = 𝜃(𝜇𝑡 − 𝑥𝑡)𝑆𝑡𝑑𝑡 + 𝑟𝑡𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑z. 
 
We include rtSt to capture the time-varying drift in prices that is typical of commodities. For 
this price process, we know from the application of Ito’s lemma that the rate of return on St, 
xt  = ln St , follows the process: 



 

 

 

 
 𝑑𝑥𝑡 = 𝜃(𝜇𝑡 − 𝑥𝑡)𝑑𝑡 + 𝑟𝑡𝑑𝑡 + 𝐷𝐴𝑇𝑡𝑑𝑡 + 𝜎𝑑z. 
 
We can also write: 
 
𝑥𝑡 + 𝑑𝑥𝑡 = 𝜃𝜇𝑡𝑑𝑡 + 𝑥𝑡(1 − 𝜃)𝑑𝑡 + 𝑟𝑡𝑑𝑡 + 𝐷𝐴𝑇𝑡𝑑𝑡 + 𝜎𝑑z 
 
In discrete time this is: 
 

𝑥𝑡 + Δ𝑥𝑡+1 = (1 − 𝑘)𝜇𝑡 + 𝑘𝑥𝑡 + 𝑟𝑡+1 + 𝐷𝐴𝑇𝑡+1 + 𝑏𝜎√Δ𝑡𝑧𝑡+1, 
 
where 

𝑘 = 𝑒−𝜃Δ𝑡  𝑎𝑛𝑑 𝑏 = (
(1 − 𝑒−2𝜃Δ𝑡)

2𝜃
)

0.5

. 

Without loss of generality we can set t = 0 and Δt equal to 1.o. Then, 
 
𝑥1 = (1 − 𝑘)𝜇0 + 𝑘𝑥0 + 𝑟1 + 𝐷𝐴𝑇1 + 𝑏𝜎𝑧1.  
 

The variance of x1 is  𝑏2𝜎2. Therefore, by Ito’s lemma, 𝐷𝐴𝑇1 = −
𝑏2𝜎2

2
.  

 
Similarly, 
 
𝑥2 = (1 − 𝑘)𝜇1 + 𝑘𝑥1 + 𝑟2 + 𝐷𝐴𝑇2 + 𝑏𝜎𝑧2, or 

      = (1 − 𝑘)𝜇1 + 𝑘((1 − 𝑘)𝜇0 + 𝑘𝑥0+𝑟1 + 𝐷𝐴𝑇1 + 𝑏𝜎𝑧1) + 𝑟2 + 𝐷𝐴𝑇2 + 𝑏𝜎𝑧2 

      = (1 − 𝑘)𝜇1 + 𝑘(1 − 𝑘)𝜇0 + 𝑘2𝑥0 + 𝑘𝑟1 + 𝑘𝐷𝐴𝑇1 + 𝑟2 + 𝐷𝐴𝑇2 + 𝑏𝜎(𝑘𝑧1 + 𝑧2). 
 
The variance of x2 is  𝑏2𝜎2(𝑘2 + 1). Therefore, by Ito’s lemma,  
 

𝑘𝐷𝐴𝑇1 + 𝐷𝐴𝑇2 = −
𝑏2𝜎2

2
(𝑘2 + 1). 

 
and 
 

𝐷𝐴𝑇2 = −
𝑏2𝜎2

2
(𝑘2 + 1) − 𝑘𝐷𝐴𝑇1 = −

𝑏2𝜎2

2
(𝑘2 + 1) − 𝑘

𝑏2𝜎2

2
= −

𝑏2𝜎2

2
(𝑘2 − 𝑘 + 1) 

 
Similarly, 
 
𝑥3 = (1 − 𝑘)𝜇2 + 𝑘𝑥2 + 𝑟3 + 𝐷𝐴𝑇3 + 𝑏𝜎𝑧3  
𝑥3 = (1 − 𝑘)𝜇2 + 𝑘(1 − 𝑘)𝜇1 + 𝑘2(1 − 𝑘)𝜇0 + 𝑘3𝑥0 + 𝑘2𝑟1 + 𝑘𝑟2 + 𝑟3 + 𝑘2𝐷𝐴𝑇1 + 𝑘𝐷𝐴𝑇2

+ 𝐷𝐴𝑇3 +  𝑏𝜎(𝑘2𝑧1 + 𝑘𝑧2 + 𝑧3) 
 
The variance of x3 is  𝑏2𝜎2(𝑘4 + 𝑘2 + 1). Therefore, by Ito’s lemma,  
 

𝑘2𝐷𝐴𝑇1 + 𝑘𝐷𝐴𝑇2 + 𝐷𝐴𝑇3 = −
𝑏2𝜎2

2
(𝑘4 + 𝑘2 + 1)  

 
and 
 



 

 

 

𝐷𝐴𝑇3 = −
𝑏2𝜎2

2
(𝑘4 + 𝑘2 + 1) − 𝑘2𝐷𝐴𝑇1 − 𝑘𝐷𝐴𝑇2 

            = −
𝑏2𝜎2

2
(𝑘4 + 𝑘2 + 1) +

𝑏2𝜎2

2
(𝑘3 + 𝑘) 

            = −
𝑏2𝜎2

2
(𝑘4 − 𝑘3 + 𝑘2 − 𝑘 + 1) 

 

In general, the variance of xn is 𝑏2𝜎2(𝑘(𝑛−1)2
+ 𝑘(𝑛−2)2

+ ⋯ + 𝑘2 + 1) and  

 

𝐷𝐴𝑇𝑛 = −
𝑏2𝜎2

2
(𝑘(𝑛−1)2

− 𝑘(𝑛−1)2−1 + 𝑘(𝑛−2)2
− 𝑘(𝑛−2)2−1 + ⋯ + 𝑘2 − 𝑘 + 1). 

 

As n becomes large DATn approaches −
𝑏2𝜎2

2
(

1

1+𝑘
). 

 
A Monte Carlo Illustration 
 
The random prices in the Monte Carlo simulation are: 
 
𝑆𝑡+1 = exp [𝑥𝑡+1] = exp[(1 − 𝑘)𝜇𝑡 + 𝑘𝑥𝑡 + 𝑟𝑡+1 + 𝐷𝐴𝑇𝑡+1 + 𝑏𝜎𝑧𝑡+1].  
 
Suppose that the current price of oil and its anticipated price, S0 and μ0 are both $60. The 
futures prices of oil, Ft, 1, 2 and 3 years hence are $65, $62 and $58. The volatility is 20% and 
the rate of mean reversion is 10%. Then we have this table. 
 
 

σ 20%    

Δt 1.0    

θ 10%    

b 0.952    

k 0.905    

(1 - k) 0.095    

t 0.0 1.0 2.0 3.0 

Ft $60.00 $65.00 $62.00 $68.00 

μt 4.0943 4.1744 4.1271 4.2195 

rt = ln(St+1/St)   0.080 -0.0473 0.0924 

DATt   -0.0190 -0.0174 -0.0147 

 
 
𝑆1 = exp[(0.095)(4.0943) + (0.905)(4.0943) + 0.08 − 0.0190 + (0.952)(0.20)𝑧𝑡+1] 
 
 
𝑆2 = exp[(0.095)(4.1744) + (0.905)(ln 𝑆1) − 0.047 − 0.0174 + (0.952)(0.20)𝑧𝑡+2] 
 
 
𝑆3 = exp[(0.095)(4.1271) + (0.905)(ln 𝑆2) + 0.0924 − 0.0147 + (0.952)(0.20)𝑧𝑡+3] 
 
  



 

 

 

A Trinomial Lattice Illustration 
 
Hull (p. 754- 55) illustrates the creation of a mean-reversion trinomial price lattice by starting 
with a natural logarithm lattice that is symmetric around 0.0 with nodes and probabilities 
that produce a desired spot volatility, 20%, and a desired rate of mean reversion, 10%. The 
time step is one year. Consider nodes A and B in his lattice. 
 

 
 
At nodes A and B, we have the following probability distribution of outcomes, expected values 
and volatilities. 
 

 
 
At node A, the initial value and the usual value are both 0.0. Therefore, the expected future 
value is also 0.0 and there is no mean-reversion effect. The volatility is 20%. At node B the 
initial value is 0.3464 and the usual value is 0.0. Through the choice of probabilities, the 
mean-reversion effect creates an expected future value, 0.3118, which is 90% of the initial 
value of 0.3464: the rate of mean-reversion 10%. Note that 0.90 is the equivalent of the 
variable k in the earlier discussion.  
 
Hull’s price lattice is built on the logarithm lattice by adding a constant logarithm at each date 
such that the expected value of the price at each date is equal to the forward price for that 
date. In his example, the forward price at date 1 is 22. To find the value of the logarithm to 
add, Hull solves the following equation by a search process: 
 
22.00 = 0.1667(exp[0.3464 + 𝛼1]) + 0.6667(exp[𝛼1]) + 0.1667(exp[−0.3464 + 𝛼1]). 
 
Hull’s method of building the price lattice requires solving similar but more complex 
equations at each date.  
 

0.6928 0.6928

B

0.3464 0.3464 0.3464

A

0.0000 0.0000 0.0000 0.0000

-0.3464 -0.3464 -0.3464

-0.6928 -0.6928

Hull's Natural Logarithm Lattice

Pr Outcome Pr Outcome

0.1667 0.3464 0.1217 0.6928

0.6667 0 0.6567 0.3464

0.1667 -0.3464 0.2217 0.0000

Expected Value 0.0000 0.3118

Volatility 20.00% 20.00%

Node A Node B



 

 

 

Consistent with the Monte Carlo simulation analysis, there is an analytical definition that 
eliminates the searches. Consider α1, which is 3.07104. That value is equal to ln(22.00) - 0.02, 
where 0.02 is equal to -0.5(20%2), the one-period DAT. In general, Hull’s alphas are equal to 
the natural logarithm of the forward price reduced by one-half the variance of their 
distribution, what we call a total drift adjustment term. As we showed earlier, the variance of 
the price at date 2 is: 
 
 (20%2)(k2 + 1) = (20%2)(0.902 +1) and for the price at date 3 it is: 
 
 (20%2)(k4 +k2 + 1) = (20%2)(0.904+0.902 + 1), etc.  
 
The table below summarizes the results for this example and provides a comparison of the 
results of Hull’s search solution and my analytical solution. 
 

 
 
As this example indicates, we can use this analytical result to effectively build trinomial mean-
reversion price lattices.3  

                                                 
3  ―0.03620 = ―0.5(20%2)(0.902 +1)  
 
―0.04932 = ―0.5(20%2)(0.904+0.902 + 1)  

 
 

Date 1 2 3

Forward price 22.00 23.00 24.00

ln of forward price 3.09104 3.13549 3.17805

Hull's α 3.07104 3.09930 3.12881

Hull's total drift adjustment -0.02000 -0.03619 -0.04924

Hull's model price 22.00000 23.00000 24.00000

Grant's total drift adjustment -0.02000 -0.03620 -0.04932

Grant's model price 21.99999 22.99996 23.99810


